Wednesday, 19 April 2017

Gleitende Matlab Matrix

Mit MATLAB, wie finde ich die 3-Tage gleitenden Durchschnitt einer bestimmten Spalte einer Matrix und fügen Sie den gleitenden Durchschnitt zu dieser Matrix versuche ich die 3-Tage gleitenden Durchschnitt von unten nach oben in der Matrix zu berechnen. Ich habe meinen Code: Angesichts der folgenden Matrix a und Maske: Ich habe versucht Umsetzung der conv Befehl, aber ich erhalte einen Fehler. Hier ist der Befehl conv, den ich versucht habe, auf der 2. Spalte der Matrix a zu verwenden: Die Ausgabe, die ich wünsche, wird in der folgenden Matrix gegeben: Wenn Sie irgendwelche Vorschläge haben, würde ich es sehr schätzen. Vielen Dank für die Spalte 2 der Matrix a, ich bin die Berechnung der 3-Tage gleitenden Durchschnitt wie folgt und platziert das Ergebnis in Spalte 4 der Matrix a (Ich umbenannt Matrix a als 39desiredOutput39 nur für Abbildung). Der 3-tägige Durchschnitt von 17, 14, 11 ist 14 der dreitägige Durchschnitt von 14, 11, 8 ist 11 der 3-tägige Durchschnitt von 11, 8, 5 ist 8 und der 3-Tage-Durchschnitt von 8, 5, 2 ist 5. Es gibt keinen Wert in den unteren 2 Zeilen für die 4. Spalte, da die Berechnung für den dreitägigen gleitenden Durchschnitt am unteren Ende beginnt. Die 39valid39 Ausgabe wird nicht angezeigt werden, bis mindestens 17, 14 und 11. Hoffentlich macht dies Sinn ndash Aaron 12 August, In diesem Fall tun Sie zwei Dinge falsch: Zuerst muss Ihre Faltung durch drei (oder die Länge der gleitenden Durchschnitt) geteilt werden Zweitens beachten Sie die Größe von c. Sie können nicht einfach passen c in eine. Der typische Weg, um einen gleitenden Durchschnitt wäre, um die gleiche: aber das sieht nicht wie Sie wollen. Stattdessen sind Sie gezwungen, ein paar Zeilen zu verwenden: Documentation M mean (A) liefert den Mittelwert der Elemente von A entlang der ersten Array-Dimension, deren Größe nicht gleich 1 ist. Wenn A ein Vektor ist, gibt mean (A) Mittel der Elemente. Ist A eine Matrix, so liefert (A) einen Zeilenvektor, der den Mittelwert jeder Spalte enthält. Wenn A ein mehrdimensionales Array ist, operiert das Mittel (A) entlang der ersten Array-Dimension, deren Größe nicht gleich 1 ist, wobei die Elemente als Vektoren behandelt werden. Diese Dimension wird 1, während die Größen aller anderen Dimensionen gleich bleiben. M mean (A, dim) gibt den Mittelwert der Dimension dim zurück. Wenn zum Beispiel A eine Matrix ist, dann ist Mittel (A, 2) ein Spaltenvektor, der den Mittelwert jeder Zeile enthält. M mean (, outtype) gibt den Mittelwert mit einem angegebenen Datentyp unter Verwendung eines der Eingabeargumente in den vorherigen Syntaxen zurück. Outtype kann standardmäßig sein. doppelt. Oder nativ. M mean (, nanflag) legt fest, ob NaN-Werte aus der Berechnung für eine der vorherigen Syntaxen enthalten oder weggelassen werden sollen. Mittel (A, inkludan) enthält alle NaN-Werte in der Berechnung, während Mittel (A, Omitnan) sie ignoriert. Wählen Sie Ihr LandDokumentation tsmovavg Ausgabe tsmovavg (tsobj, s, lag) liefert den einfachen gleitenden Durchschnitt für finanzielle Zeitreihe Objekt, tsobj. Verzögerung gibt die Anzahl der vorherigen Datenpunkte an, die beim Berechnen des gleitenden Mittelwerts mit dem aktuellen Datenpunkt verwendet werden. Ausgabe tsmovavg (Vektor, s, lag, dim) gibt den einfachen gleitenden Durchschnitt für einen Vektor zurück. Verzögerung gibt die Anzahl der vorherigen Datenpunkte an, die beim Berechnen des gleitenden Mittelwerts mit dem aktuellen Datenpunkt verwendet werden. Output tsmovavg (tsobj, e, timeperiod) gibt den exponentiellen gewichteten gleitenden Durchschnitt für das finanzielle Zeitreihenobjekt tsobj zurück. Der exponentielle gleitende Durchschnitt ist ein gewichteter gleitender Durchschnitt, wobei die Zeitperiode den Zeitraum angibt. Exponentielle gleitende Durchschnitte reduzieren die Verzögerung durch mehr Gewicht auf die jüngsten Preise. Zum Beispiel gewichtet ein 10-Perioden-exponentieller gleitender Durchschnitt den jüngsten Preis um 18,18. Exponentialprozent 2 / (TIMEPER 1) oder 2 / (WINDOWSIZE 1). Output tsmovavg (Vektor, e, timeperiod, dim) gibt den exponentiell gewichteten gleitenden Durchschnitt für einen Vektor zurück. Der exponentielle gleitende Durchschnitt ist ein gewichteter gleitender Durchschnitt, wobei die Zeitperiode den Zeitraum angibt. Exponentielle gleitende Durchschnitte reduzieren die Verzögerung durch mehr Gewicht auf die jüngsten Preise. Zum Beispiel gewichtet ein 10-Perioden-exponentieller gleitender Durchschnitt den jüngsten Preis um 18,18. (2 / (Zeitabschnitt 1)). Ausgabe tsmovavg (tsobj, t, numperiod) gibt den dreieckigen gleitenden Durchschnitt für das finanzielle Zeitreihenobjekt tsobj zurück. Der dreieckige gleitende Durchschnitt doppelt glättet die Daten. Tsmovavg berechnet den ersten einfachen gleitenden Durchschnitt mit Fensterbreite von ceil (numperiod 1) / 2. Dann berechnet es einen zweiten einfachen gleitenden Durchschnitt auf dem ersten gleitenden Durchschnitt mit der gleichen Fenstergröße. Ausgabe tsmovavg (Vektor, t, numperiod, dim) gibt den dreieckigen gleitenden Durchschnitt für einen Vektor zurück. Der dreieckige gleitende Durchschnitt doppelt glättet die Daten. Tsmovavg berechnet den ersten einfachen gleitenden Durchschnitt mit Fensterbreite von ceil (numperiod 1) / 2. Dann berechnet es einen zweiten einfachen gleitenden Durchschnitt auf dem ersten gleitenden Durchschnitt mit der gleichen Fenstergröße. Ausgabe tsmovavg (tsobj, w, Gewichte) gibt den gewichteten gleitenden Durchschnitt für das finanzielle Zeitreihenobjekt tsobj zurück. Indem Gewichte für jedes Element in dem sich bewegenden Fenster bereitgestellt werden. Die Länge des Gewichtsvektors bestimmt die Größe des Fensters. Wenn größere Gewichtungsfaktoren für neuere Preise und kleinere Faktoren für frühere Preise verwendet werden, ist der Trend eher auf die jüngsten Veränderungen ansprechen. Ausgabe tsmovavg (Vektor, w, Gewichte, dim) gibt den gewichteten gleitenden Durchschnitt für den Vektor zurück, indem Gewichte für jedes Element in dem sich bewegenden Fenster geliefert werden. Die Länge des Gewichtsvektors bestimmt die Größe des Fensters. Wenn größere Gewichtungsfaktoren für neuere Preise und kleinere Faktoren für frühere Preise verwendet werden, ist der Trend eher auf die jüngsten Veränderungen ansprechen. Output tsmovavg (tsobj, m, numperiod) gibt den modifizierten gleitenden Durchschnitt für das finanzielle Zeitreihenobjekt tsobj zurück. Der modifizierte gleitende Durchschnitt ist ähnlich dem einfachen gleitenden Durchschnitt. Betrachten Sie das Argument numperiod als die Verzögerung des einfachen gleitenden Mittelwerts. Der erste modifizierte gleitende Durchschnitt wird wie ein einfacher gleitender Durchschnitt berechnet. Nachfolgende Werte werden durch Addition des neuen Preises und Subtrahieren des letzten Durchschnitts aus der resultierenden Summe berechnet. Ausgabe tsmovavg (Vektor, m, numperiod, dim) gibt den modifizierten gleitenden Durchschnitt für den Vektor zurück. Der modifizierte gleitende Durchschnitt ist ähnlich dem einfachen gleitenden Durchschnitt. Betrachten Sie das Argument numperiod als die Verzögerung des einfachen gleitenden Mittelwerts. Der erste modifizierte gleitende Durchschnitt wird wie ein einfacher gleitender Durchschnitt berechnet. Nachfolgende Werte werden durch Addition des neuen Preises und Subtrahieren des letzten Durchschnitts aus der resultierenden Summe berechnet. Dim 8212 Dimension, um auf positive ganze Zahl mit dem Wert 1 oder 2 arbeiten Dimension zu arbeiten, als eine positive Ganzzahl mit einem Wert von 1 oder 2 angegeben. Dim ist ein optionales Eingabeargument, und wenn es nicht als eine Eingabe enthalten ist, die Standardeinstellung Wert 2 wird angenommen. Der Standardwert von dim 2 gibt eine zeilenorientierte Matrix an, wobei jede Zeile eine Variable ist und jede Spalte eine Beobachtung ist. Wenn dim 1. die Eingabe als Spaltenvektor oder spaltenorientierte Matrix angenommen wird, wobei jede Spalte eine Variable und jede Zeile eine Beobachtung ist. E 8212 Indikator für exponentiell gleitenden durchschnittlichen Charaktervektor Der exponentielle gleitende Durchschnitt ist ein gewichteter gleitender Durchschnitt, wobei der Zeitabschnitt der Zeitraum des exponentiellen gleitenden Durchschnitts ist. Exponentielle gleitende Durchschnitte reduzieren die Verzögerung durch mehr Gewicht auf die jüngsten Preise. Zum Beispiel gewichtet ein 10-Perioden-exponentieller gleitender Durchschnitt den jüngsten Preis um 18,18. Exponentialprozent 2 / (TIMEPER 1) oder 2 / (WINDOWSIZE 1) timeperiod 8212 Länge der Zeitperiode nichtnegative Ganzzahl Wählen Sie Ihr LandDokumentation tsmovavg Ausgabe tsmovavg (tsobj, s, lag) gibt den einfachen gleitenden Durchschnitt für das finanzielle Zeitreihenobjekt tsobj zurück. Verzögerung gibt die Anzahl der vorherigen Datenpunkte an, die beim Berechnen des gleitenden Mittelwerts mit dem aktuellen Datenpunkt verwendet werden. Ausgabe tsmovavg (Vektor, s, lag, dim) gibt den einfachen gleitenden Durchschnitt für einen Vektor zurück. Verzögerung gibt die Anzahl der vorherigen Datenpunkte an, die beim Berechnen des gleitenden Mittelwerts mit dem aktuellen Datenpunkt verwendet werden. Output tsmovavg (tsobj, e, timeperiod) gibt den exponentiellen gewichteten gleitenden Durchschnitt für das finanzielle Zeitreihenobjekt tsobj zurück. Der exponentielle gleitende Durchschnitt ist ein gewichteter gleitender Durchschnitt, wobei die Zeitperiode den Zeitraum angibt. Exponentielle gleitende Durchschnitte reduzieren die Verzögerung durch mehr Gewicht auf die jüngsten Preise. Zum Beispiel gewichtet ein 10-Perioden-exponentieller gleitender Durchschnitt den jüngsten Preis um 18,18. Exponentialprozent 2 / (TIMEPER 1) oder 2 / (WINDOWSIZE 1). Output tsmovavg (Vektor, e, timeperiod, dim) gibt den exponentiell gewichteten gleitenden Durchschnitt für einen Vektor zurück. Der exponentielle gleitende Durchschnitt ist ein gewichteter gleitender Durchschnitt, wobei die Zeitperiode den Zeitraum angibt. Exponentielle gleitende Durchschnitte reduzieren die Verzögerung durch mehr Gewicht auf die jüngsten Preise. Zum Beispiel gewichtet ein 10-Perioden-exponentieller gleitender Durchschnitt den jüngsten Preis um 18,18. (2 / (Zeitabschnitt 1)). Ausgabe tsmovavg (tsobj, t, numperiod) gibt den dreieckigen gleitenden Durchschnitt für das finanzielle Zeitreihenobjekt tsobj zurück. Der dreieckige gleitende Durchschnitt doppelt glättet die Daten. Tsmovavg berechnet den ersten einfachen gleitenden Durchschnitt mit Fensterbreite von ceil (numperiod 1) / 2. Dann berechnet es einen zweiten einfachen gleitenden Durchschnitt auf dem ersten gleitenden Durchschnitt mit der gleichen Fenstergröße. Ausgabe tsmovavg (Vektor, t, numperiod, dim) gibt den dreieckigen gleitenden Durchschnitt für einen Vektor zurück. Der dreieckige gleitende Durchschnitt doppelt glättet die Daten. Tsmovavg berechnet den ersten einfachen gleitenden Durchschnitt mit Fensterbreite von ceil (numperiod 1) / 2. Dann berechnet es einen zweiten einfachen gleitenden Durchschnitt auf dem ersten gleitenden Durchschnitt mit der gleichen Fenstergröße. Ausgabe tsmovavg (tsobj, w, Gewichte) gibt den gewichteten gleitenden Durchschnitt für das finanzielle Zeitreihenobjekt tsobj zurück. Indem Gewichte für jedes Element in dem sich bewegenden Fenster bereitgestellt werden. Die Länge des Gewichtsvektors bestimmt die Größe des Fensters. Wenn größere Gewichtungsfaktoren für neuere Preise und kleinere Faktoren für frühere Preise verwendet werden, ist der Trend eher auf die jüngsten Veränderungen ansprechen. Ausgabe tsmovavg (Vektor, w, Gewichte, dim) gibt den gewichteten gleitenden Durchschnitt für den Vektor zurück, indem Gewichte für jedes Element in dem sich bewegenden Fenster geliefert werden. Die Länge des Gewichtsvektors bestimmt die Größe des Fensters. Wenn größere Gewichtungsfaktoren für neuere Preise und kleinere Faktoren für frühere Preise verwendet werden, ist der Trend eher auf die jüngsten Veränderungen ansprechen. Output tsmovavg (tsobj, m, numperiod) gibt den modifizierten gleitenden Durchschnitt für das finanzielle Zeitreihenobjekt tsobj zurück. Der modifizierte gleitende Durchschnitt ist ähnlich dem einfachen gleitenden Durchschnitt. Betrachten Sie das Argument numperiod als die Verzögerung des einfachen gleitenden Mittelwerts. Der erste modifizierte gleitende Durchschnitt wird wie ein einfacher gleitender Durchschnitt berechnet. Nachfolgende Werte werden durch Addition des neuen Preises und Subtrahieren des letzten Durchschnitts aus der resultierenden Summe berechnet. Ausgabe tsmovavg (Vektor, m, numperiod, dim) gibt den modifizierten gleitenden Durchschnitt für den Vektor zurück. Der modifizierte gleitende Durchschnitt ist ähnlich dem einfachen gleitenden Durchschnitt. Betrachten Sie das Argument numperiod als die Verzögerung des einfachen gleitenden Mittelwerts. Der erste modifizierte gleitende Durchschnitt wird wie ein einfacher gleitender Durchschnitt berechnet. Nachfolgende Werte werden durch Addition des neuen Preises und Subtrahieren des letzten Durchschnitts aus der resultierenden Summe berechnet. Dim 8212 Dimension, um auf positive ganze Zahl mit dem Wert 1 oder 2 arbeiten Dimension zu arbeiten, als eine positive Ganzzahl mit einem Wert von 1 oder 2 angegeben. Dim ist ein optionales Eingabeargument, und wenn es nicht als eine Eingabe enthalten ist, die Standardeinstellung Wert 2 wird angenommen. Der Standardwert von dim 2 gibt eine zeilenorientierte Matrix an, wobei jede Zeile eine Variable ist und jede Spalte eine Beobachtung ist. Wenn dim 1. die Eingabe als Spaltenvektor oder spaltenorientierte Matrix angenommen wird, wobei jede Spalte eine Variable und jede Zeile eine Beobachtung ist. E 8212 Indikator für exponentiell gleitenden durchschnittlichen Charaktervektor Der exponentielle gleitende Durchschnitt ist ein gewichteter gleitender Durchschnitt, wobei der Zeitabschnitt der Zeitraum des exponentiellen gleitenden Durchschnitts ist. Exponentielle gleitende Durchschnitte reduzieren die Verzögerung durch mehr Gewicht auf die jüngsten Preise. Zum Beispiel gewichtet ein 10-Perioden-exponentieller gleitender Durchschnitt den jüngsten Preis um 18,18. Exponentialprozent 2 / (TIMEPER 1) oder 2 / (WINDOWSIZE 1) Zeitintervall 8212 Länge der Zeitperiode nichtnegative Ganzzahl Wählen Sie Ihr LandDokumentation Beschreibung macdvec, nineperma macd (data) berechnet die MACD-Zeile (Macdvec). Aus der Datenmatrix, Daten, und die neun-Periode exponentiellen gleitenden Durchschnitt, neunperma. Aus der MACD-Linie. Wenn die beiden Zeilen gezeichnet werden, können sie Ihnen einen Hinweis geben, ob eine Aktie gekauft oder verkauft werden soll, wann ein überkaufter oder überverkaufter Zustand auftritt und wann das Ende eines Trends eintritt. Der MACD wird durch Subtrahieren des 26-Perioden (7,5) exponentiellen gleitenden Mittelwertes aus dem 12-Perioden (15) gleitenden Durchschnitt berechnet. Als Signalleitung wird der 9-Tage (20) exponentielle gleitende Durchschnitt der MACD-Leitung verwendet. Zum Beispiel, wenn die MACD und die 20 gleitende durchschnittliche Linie gerade gekreuzt haben und die MACD-Linie unter die andere Linie fällt, ist es Zeit zu verkaufen. Macdvec, nineperma macd (data, dim) können Sie die Orientierungsrichtung für den Eingang angeben. Wenn es sich bei den Eingabedaten um eine Matrix handelt, müssen Sie angeben, ob jede Zeile ein Satz von Beobachtungen (dim 2) ist oder jede Spalte eine Menge von Beobachtungen ist (dim 1. der Standardwert). Macdts macd (tsobj, seriesname) berechnet die MACD-Zeile aus der Finanzzeitreihe tsobj. Und der neunperiodische exponentielle gleitende Durchschnitt aus der MACD-Linie. Der MACD wird für die Schlusskursreihe in tsobj berechnet. Vermutlich den Namen Close. Das Ergebnis wird in den finanziellen Zeitreihenobjekt-Macdts abgelegt. Das macdts-Objekt hat dieselben Daten wie das Eingabeobjekt tsobj und enthält nur zwei Serien mit dem Namen MACDLine und NinePerMA. Die erste Reihe enthält die Werte, die die MACD-Linie darstellen, und die zweite ist der neunperiodische exponentielle gleitende Durchschnitt der MACD-Linie. Beispiele Berechnen Sie die Moving Average Convergence / Divergence (MACD) Dieses Beispiel zeigt, wie die MACD für Disney-Aktien zu berechnen und die Ergebnisse. Verwandte Beispiele Mehr über Referenzen Achelis, Steven B. Technische Analyse Von A bis Z. Zweite Auflage. McGraw-Hill, 1995, S. 1668211168. Siehe auch Einführung vor R2006a MATLAB-Befehl Sie haben auf einen Link geklickt, der diesem MATLAB-Befehl entspricht: Führen Sie den Befehl aus, indem Sie ihn im MATLAB-Befehlsfenster eingeben. Webbrowser unterstützen keine MATLAB-Befehle. War dieses Thema hilfreich Wählen Sie Ihr Land Wählen Sie Ihr Land, um Inhalte zu übersetzen, wo verfügbar und sehen Sie lokale Veranstaltungen und Angebote. Wählen Sie auf der Grundlage Ihres Standortes:. Sie können auch einen Standort aus der folgenden Liste auswählen:


No comments:

Post a Comment